The empirics of the life cycle model.

Orazio P. Attanasio

University College London, Institute for Fiscal Studies and NBER

Zeuthen Lectures
Copenhagen - October 7-9 2014
Outline of Lecture 3: The empirics of the life cycle model.

1. Measuring consumption: some serious challenges.

2. Intra-temporal conditions:
 1. Demand Analysis.
 2. Marginal Rates of Substitutions for Labour supply.

3. Approaches based on Euler equations.
 - Aggregation and estimation of preferences.

4. Approaches based on the level of consumption:
 - Calibration and simulation methods.

5. The evolution of second moments of consumption and earnings.
The challenge of measuring consumption

- Microeconomic data that include information on consumption are essential for a variety of purposes:
 - Computing the weights for CPI.
 - Estimating the models we have been discussing.
 - Evaluating a variety of policies/
The challenge of measuring consumption

- Microeconomic data that include information on consumption are essential for a variety of purposes:
 - Computing the weights for CPI.
 - Estimating the models we have been discussing.
 - Evaluating a variety of policies.
- However, comprehensive measures of consumption are few and far between.
The challenge of measuring consumption

- Microeconomic data that include information on consumption are essential for a variety of purposes:
 - Computing the weights for CPI.
 - Estimating the models we have been discussing.
 - Evaluating a variety of policies.

- However, comprehensive measures of consumption are few and far between.

- In many countries such information is collected within expenditure survey that are used to compute the CPI weights.
The challenge of measuring consumption

- Microeconomic data that include information on consumption are essential for a variety of purposes:
 - Computing the weights for CPI.
 - Estimating the models we have been discussing.
 - Evaluating a variety of policies.

- However, comprehensive measures of consumption are few and far between.

- In many countries such information is collected within expenditure survey that are used to compute the CPI weights.

- However:
 - In many countries the information is collected only when weights are revised (roughly every 10 years).
 - Very few countries have a longitudinal dimension (at the household level).
 - US: 4 quarters
 - Spain: 8 quarters.
 - Often data are affected by severe measurement error.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- However, a substantial part is due to mis-measurement and under-reporting.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- However, a substantial part is due to mis-measurement and under-reporting.
- In the case of the CEX in the US, the aggregated consumption from the CEX accounts for less than 60% of the total.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- However, a substantial part is due to mis-measurement and under-reporting.
- In the case of the CEX in the US, the aggregated consumption from the CEX accounts for less than 60% of the total.
- Moreover this percentage has been decreasing.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- However, a substantial part is due to mis-measurement and under-reporting.
- In the case of the CEX in the US, the aggregated consumption from the CEX accounts for less than 60% of the total.
- Moreover this percentage has been decreasing.
- The programme seems to be missing increasingly the bottom and the top of the income distribution.
The challenge of measuring consumption

- It is very difficult, on the basis of most data sets, to reconstruct the entire household budget constraint.
- Grossing up to national account data, one can account only for a fraction of the total.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- However, a substantial part is due to mis-measurement and under-reporting.
- In the case of the CEX in the US, the aggregated consumption from the CEX accounts for less than 60% of the total.
- Moreover this percentage has been decreasing.
- The programme seems to be missing increasingly the bottom and the top of the income distribution.
- Moreover, people seem to be under-reporting some important items.
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example)
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example)
- The fact of having a comprehensive data which includes information on durables, assets, income, demographics etc. it is a big advantage.
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example).
- The fact of having a comprehensive data which includes information on durables, assets, income, demographics etc. it is a big advantage.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example)
- The fact of having a comprehensive data which includes information on durables, assets, income, demographics etc. it is a big advantage.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- The sample size has recently been increased.
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example).
- The fact of having a comprehensive data which includes information on durables, assets, income, demographics etc. it is a big advantage.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- The sample size has recently been increased.
- Substantial revisions are being planned to address the most urgent problems.
The challenge of measuring consumption: some positive news

- However, the CEX is able to match some components remarkably well (cars is an example)
- The fact of having a comprehensive data which includes information on durables, assets, income, demographics etc. it is a big advantage.
- This is partly explained by the fact that survey data target different populations and different measures of consumption.
- The sample size has recently been increased.
- Substantial revisions are being planned to address the most urgent problems.
The challenge of measuring consumption: some positive news

- Some new data sources are being developed and traditional ones revised.
The challenge of measuring consumption: some positive news

- Some new data sources are being developed and traditional ones revised.
- The PSID consumption module has recently been renewed and it includes now a large number of items that take into account about 70% of consumption.
The challenge of measuring consumption: some positive news

- Some new data sources are being developed and traditional ones revised.
- The PSID consumption module has recently been renewed and it includes now a large number of items that take into account about 70% of consumption.
- New data based on financial software (mint.docm and similar).
Some new data sources are being developed and traditional ones revised.

the PSID consumption module has recently being renewed and it includes now large number of items that take into account about 70% of consumption.

New data based on financial software (mint.docm and similar).

Scanner data.
The challenge of measuring consumption: some positive news

- Some new data sources are being developed and traditional ones revised.
- the PSID consumption module has recently being renewed and it includes now large number of items that take into account about 70% of consumption.
- New data based on financial software (mint.docm and similar).
- Scanner data.
- Over the coming years, experimentation will be key.
The challenge of measuring consumption: some positive news

- Some new data sources are being developed and traditional ones revised.
- The PSID consumption module has recently being renewed and it includes now large number of items that take into account about 70% of consumption.
- New data based on financial software (mint.docm and similar).
- Scanner data.
- Over the coming years, experimentation will be key.
The challenge of measuring consumption: some positive news

In the future:

- Running pilots on different ways to ask questions will be key.
The challenge of measuring consumption: some positive news

In the future:
- Running pilots on different ways to ask questions will be key.
- Theory should inform the collection of new data and the design of new modules.
The challenge of measuring consumption: some positive news

In the future:

- Running pilots on different ways to ask questions will be key.
- Theory should inform the collection of new data and the design of new modules.
- As Browning and Crossley (2009) point out, it might be better to have two noisy measures of consumption than one ‘perfect’ one.
The challenge of measuring consumption: some positive news

In the future:

- Running pilots on different ways to ask questions will be key.
- Theory should inform the collection of new data and the design of new modules.
- As Browning and Crossley (2009) point out, it might be better to have two noisy measures of consumption than one ‘perfect’ one.
- It might be better to focus on measures that have very different elasticity of substitution, possibly one luxury and one necessity.
The challenge of measuring consumption: some positive news

In the future:

- Running pilots on different ways to ask questions will be key.
- Theory should inform the collection of new data and the design of new modules.
- As Browning and Crossley (2009) point out, it might be better to have two noisy measures of consumption than one ‘perfect’ one.
- It might be better to focus on measures that have very different elasticity of substitution, possibly one luxury and one necessity.
- It will be valuable to have the ability of reconstructing budget constraints.
The challenge of measuring consumption: some positive news

In the future:

- Running pilots on different ways to ask questions will be key.
- Theory should inform the collection of new data and the design of new modules.
- As Browning and Crossley (2009) point out, it might be better to have two noisy measures of consumption than one ‘perfect’ one.
- It might be better to focus on measures that have very different elasticity of substitution, possibly one luxury and one necessity.
- It will be valuable to have the ability of reconstructing budget constraints.
- It will be valuable to cross the information on consumption with information about other variables:
 - Savings (including pension rights);
 - Health;
 - Stocks of durables.
As we mentioned several times, the equations that relate the marginal utilities of different commodities do not have an expectational error.
Estimating intratemporal first order conditions.

- As we mentioned several times, the equations that relate the marginal utilities of different commodities do not have an expectational error.
- The model does not have perfect fit only because of the presence of taste shifts.
- The model represents equilibrium conditions. This means that the choice variables (the quantities) can be related to taste shocks.
Estimating intratemporal first order conditions.

- As we mentioned several times, the equations that relate the marginal utilities of different commodities do not have an expectational error.
- The model does not have perfect fit only because of the presence of taste shifts.
- The model represents equilibrium conditions. This means that the choice variables (the quantities) can be related to taste shocks.
- In some cases, even individual prices could be related to individual taste shocks.
 - This is the case for wages.
 - Taste for work and ability (and productivity) could be related.
Estimating intratemporal first order conditions.

- This implies that we cannot use OLS estimates but need instruments.
Estimating intratemporal first order conditions.

- This implies that we cannot use OLS estimates but need instruments.
- In particular, we would like to have instruments that move prices but are not necessarily related to individual demand shocks (tastes).
Estimating intratemporal first order conditions.

- This implies that we cannot use OLS estimates but need instruments.
- In particular, we would like to have instruments that move prices but are not necessarily related to individual demand shocks. (tastes).
- One possibility is to use variability across markets and over time (and in the case of wages skill levels) to estimate the relevant MRS’s.
This implies that we cannot use OLS estimates but need instruments.

In particular, we would like to have instruments that move prices but are not necessarily related to individual demand shocks. (tastes).

One possibility is to use variability across markets and over time (and in the case of wages skill levels) to estimate the relevant MRS’s.

Caveat: skill levels could be related to tastes. We might need to control for skill level in the MRS.
Related to the estimation of MRS’s conditions, is the estimation of demand systems.
Estimating demand systems

- Related to the estimation of MRS’s conditions, is the estimation of demand systems.
- Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.
Estimating demand systems

- Related to the estimation of MRS’s conditions, is the estimation of demand systems.
- Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.
- Demand systems should be theory consistent.
Estimating demand systems

- Related to the estimation of MRS’s conditions, is the estimation of demand systems.
- Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.
- Demand systems should be theory consistent.
- AIDS or QUAIDS systems have been widely used.
 - They are integrable system.
 - They are manageable.
 - QUAIDS is the highest rank theory consistent demand system.
Estimating demand systems

- Related to the estimation of MRS’s conditions, is the estimation of demand systems.
- Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.
- Demand systems should be theory consistent.
- AIDS or QUAIDS systems have been widely used.
 - They are integrable system.
 - They are manageable.
 - QUAIDS is the highest rank theory consistent demand system.
- No consensus exists over the best econometric practice.
Estimating demand systems

- Related to the estimation of MRS’s conditions, is the estimation of demand systems.
- Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.
- Demand systems should be theory consistent.
- AIDS or QUAIDS systems have been widely used.
 - They are integrable system.
 - They are manageable.
 - QUAIDS is the highest rank theory consistent demand system.
- No consensus exists over the best econometric practice.
- Instrument total (log) expenditure?
Related to the estimation of MRS’s conditions, is the estimation of demand systems.

Despite that this is one of the oldest endeavour in economics, no consensus procedure exists.

Demand systems should be theory consistent.

AIDS or QUAIDS systems have been widely used.

They are integrable system.

They are manageable.

QUAIDS is the highest rank theory consistent demand system.

No consensus exists over the best econometric practice.

Instrument total (log) expenditure?

With what?

How do we deal with measurement error?
Related to the estimation of MRS’s conditions, is the estimation of demand systems.

Despite that this is one of the oldest endeavours in economics, no consensus procedure exists.

Demand systems should be theory consistent.

AIDS or QUAIDS systems have been widely used.
 - They are integrable system.
 - They are manageable.
 - QUAIDS is the highest rank theory consistent demand system.

No consensus exists over the best econometric practice.

Instrument total (log) expenditure?

With what?

How do we deal with measurement error?

How do we enter observed heterogeneity?
 - Intercept shifts.
 - Interaction with prices.
 - Slope shifts?
The Euler equation is particularly useful from an empirical point of view because it allows estimating preference parameters and testing the validity of the model without having to solve the dynamic optimization problem for consumption or other variables jointly determined with consumption.
Estimating Euler equations.

- The Euler equation is particularly useful from an empirical point of view because it allows estimating preference parameters and testing the validity of the model without having to solve the dynamic optimization problem for consumption or other variables jointly determined with consumption.

- The first paper to estimate a consumption Euler equation (Hall, 1978) was entirely devoted to testing the model, as it focused on the case of quadratic utility and a fixed interest rate such that $\beta(1 + R) = 1$.
Estimating Euler equations.

- The Euler equation is particularly useful from an empirical point of view because it allows estimating preference parameters and testing the validity of the model without having to solve the dynamic optimization problem for consumption or other variables jointly determined with consumption.

- The first paper to estimate a consumption Euler equation (Hall, 1978) was entirely devoted to testing the model, as it focused on the case of quadratic utility and a fixed interest rate such that $\beta(1 + R) = 1$.

- Under these conditions, the random walk equation obtains and preference parameters are not identified.
Estimating Euler equations.

- The Euler equation is particularly useful from an empirical point of view because it allows estimating preference parameters and testing the validity of the model without having to solve the dynamic optimization problem for consumption or other variables jointly determined with consumption.

- The first paper to estimate a consumption Euler equation (Hall, 1978) was entirely devoted to testing the model, as it focused on the case of quadratic utility and a fixed interest rate such that \(\beta(1 + R) = 1 \).

- Under these conditions, the random walk equation obtains and preference parameters are not identified.

- The Euler equation implies that no variable known to the consumer at time \(t \) should help predict the change in consumption between \(t \) and \(t+1 \).
Estimating Euler equations.

\[\beta(1 + R_{t+1}) \frac{MU_{c_{t+1}}}{MU_{c_t}} - 1 = \epsilon_{t+1} \]

\[E_t[\epsilon_{t+1}] = 0 \]
Estimating Euler equations.

\[\beta(1 + R_{t+1}) \frac{MU_{c_{t+1}}}{MU_{c_t}} - 1 = \epsilon_{t+1} \]

\[E_t[\epsilon_{t+1}] = 0 \]

Estimation of the Euler equation requires observations covering a long period of time (Chamberlain, 1984, Hayashi, 1987).
Estimating Euler equations.

\[\beta (1 + R_{t+1}) \frac{MU_{c_{t+1}}}{MU_{c_t}} - 1 = \epsilon_{t+1} \]

\[E_t[\epsilon_{t+1}] = 0 \]

- Estimation of the Euler equation requires observations covering a long period of time (Chamberlain, 1984, Hayashi, 1987).
- This is an implication of the nature of the residuals, which include an expectation error.
Estimating Euler equations.

\[
\beta (1 + R_{t+1}) \frac{MU_{c_{t+1}}}{MU_{c_t}} - 1 = \epsilon_{t+1}
\]

\[
E_t[\epsilon_{t+1}] = 0
\]

- Estimation of the Euler equation requires observations covering a long period of time (Chamberlain, 1984, Hayashi, 1987).
- This is an implication of the nature of the residuals, which include an expectation error.
- There is no reason why expectational errors should averaged out to zero over the cross section.
Estimating Euler equations.

- The solution of adding a 'period dummy' does not work:
 - unless all individuals have the same 'surprise'.
 - This would be the case if there were complete markets and idiosyncratic risk was completely diversified away.
The solution of adding a 'period dummy' does not work:

- unless all individuals have the same 'surprise'.
- This would be the case if there were complete markets and idiosyncratic risk was completely diversified away.
- Failing that, adding a period dummy, would involve an additional parameter into the model:

\[
\begin{align*}
E_N[\epsilon^i_t] &\neq 0 \\
E_N[\epsilon^i_t - d_t] &= 0 \quad \text{but} \ldots
\end{align*}
\]
The solution of adding a 'period dummy' does not work:

- unless all individuals have the same 'surprise'.
- This would be the case if there were complete markets and idiosyncratic risk was completely diversified away.
- Failing that, adding a period dummy, would involve an additional parameter into the model:

$$ E_N[\epsilon^i_t] \neq 0 $$

$$ E_N[\epsilon^i_t - d_t] = 0 \quad \text{but...} $$

$$ E_N[(\epsilon - d_t)z^i_t] \neq 0 $$
Estimating Euler equations.

Therefore a large N data set is not necessarily sufficient to estimate an Euler equation.
Estimating Euler equations.

- Therefore a large N data set is not necessarily sufficient to estimate an Euler equation.
- The asymptotics only works for large T.
Therefore a large N data set is not necessarily sufficient to estimate an Euler equation.

The asymptotics only works for large T.

In the case of micro data, it is not necessary to have a large T for each household (or group of households).
Estimating Euler equations.

- Therefore a large N data set is not necessarily sufficient to estimate an Euler equation.
- The asymptotics only works for large T.
- In the case of micro data, it is not necessary to have a large T for each household (or group of households).
- It is possible to work with unbalanced panels, as long as they cover a sufficiently long time horizon.
Estimating Euler equations.

- Therefore a large N data set is not necessarily sufficient to estimate an Euler equation.
- The asymptotics only works for large T.
- In the case of micro data, it is not necessary to have a large T for each household (or group of households).
- It is possible to work with unbalanced panels, as long as they cover a sufficiently long time horizon.
- Additional considerations need to be kept in mind about the nature of the other residuals.
 - Measurement error.
 - Taste shifters.
 - Unobserved heterogeneity.
The Euler equation with CRRA preferences.

Under CRRA preferences, the Euler equation is given by:

\[c_t^{-\gamma} = E_t \left[\beta \left(1 + R^*_{t+1}\right) c_{t+1}^{-\gamma} \right] \]
The Euler equation with CRRA preferences.

Under CRRA preferences, the Euler equation is given by:

\[c_t^{-\gamma} = E_t \left[\beta(1 + R_{t+1}^*) c_{t+1}^{-\gamma} \right] \]

This can be re-written as:

\[E_t \left[\beta(1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} \right] = 1. \]
Under CRRA preferences, the Euler equation is given by:

\[c_t^{-\gamma} = E_t \left[\beta (1 + R_{t+1}^*) c_{t+1}^{-\gamma} \right] \]

This can be re-written as:

\[E_t \left[\beta (1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} \right] = 1. \]

or:

\[\left[\beta (1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} \right] = \epsilon_{t+1}, \quad E_t[\epsilon_{t+1}] = 1. \]
Log-linearizing the CRRA Euler equation.

- The Euler equation can be conveniently log-linearized.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \tilde{\epsilon}_{t+1} \]

where \(\epsilon_{t+1} = \log(\tilde{\epsilon}_{t+1}) \)
Log-linearizing the CRRA Euler equation.

- The Euler equation can be conveniently log-linearized.
 \[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \tilde{\epsilon}_{t+1} \]

 where \(\epsilon_{t+1} = \log(\tilde{\epsilon}_{t+1}) \)

- The parameter \(1/\gamma \) represents the E.I.S.: how the marginal rate of substitution between today and tomorrow’s consumption reacts to changes in the interest rate, keeping life-time utility constant.
Log-linearizing the CRRA Euler equation.

- The Euler equation can be conveniently log-linearized.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \tilde{\epsilon}_{t+1} \]

where \(\epsilon_{t+1} = \log(\tilde{\epsilon}_{t+1}) \)

- The parameter \(1/\gamma \) represents the E.I.S.: how the marginal rate of substitution between today and tomorrow’s consumption reacts to changes in the interest rate, keeping life-time utility constant.

- The increase in the interest rate represents a decrease in the price of future consumption relative to current consumption, and this induces a ”substitution effect”.
Log-linearizing the CRRA Euler equation.

- The Euler equation can be conveniently log-linearized.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log \left(1 + R^k_{t+1}\right) + \tilde{\epsilon}^k_{t+1} \]

where \(\epsilon_{t+1} = \log(\tilde{\epsilon}_{t+1}) \)

- The parameter \(1/\gamma \) represents the E.I.S.: how the marginal rate of substitution between today and tomorrow’s consumption reacts to changes in the interest rate, keeping life-time utility constant.

- The increase in the interest rate represents a decrease in the price of future consumption relative to current consumption, and this induces a ”substitution effect”.

- This is counteracted by an ”income effect” since with a higher interest rate: a given target level of future consumption is achieved with less saving.
Log-linearizing the CRRA Euler equation.

- The Euler equation can be conveniently log-linearized.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \tilde{\epsilon}_{t+1} \]

where \(\epsilon_{t+1} = \log(\tilde{\epsilon}_{t+1}) \)

- The parameter \(1/\gamma \) represents the E.I.S.: how the marginal rate of substitution between today and tomorrow’s consumption reacts to changes in the interest rate, keeping life-time utility constant.

- The increase in the interest rate represents a decrease in the price of future consumption relative to current consumption, and this induces a ”substitution effect”.

- This is counteracted by an ”income effect” since with a higher interest rate: a given target level of future consumption is achieved with less saving.
Log-linearizing the CRRA Euler equation.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1} \]

With more than two periods there is also a wealth effects that reinforces the substitution effect as expected future incomes are discounted with higher interest rates.
Log-linearizing the CRRA Euler equation.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1} \]

- With more than two periods there is also a wealth effects that reinforces the substitution effect as expected future incomes are discounted with higher interest rates.
- What is the interpretation of \(\alpha_{t+1} \)?
Log-linearizing the CRRA Euler equation.

\[\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \epsilon^k_{t+1} \]

- With more than two periods there is also a wealth effect that reinforces the substitution effect as expected future incomes are discounted with higher interest rates.
- What is the interpretation of \(\alpha_{t+1} \)?
- To answer this question we want to go back to the basic Euler equation.
Log-linearizing the CRRA Euler equation.

Remember that we started from:

\[
\beta(1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} = \tilde{\epsilon}_{t+1}, \quad E_t[\tilde{\epsilon}_{t+1}] = 1.
\]
Log-linearizing the CRRA Euler equation.

Remember that we started from:

\[
\beta (1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} = \tilde{e}_{t+1}, \quad E_t[\tilde{e}_{t+1}] = 1.
\]

- The 'residual' term \(\tilde{e}_{t+1} \) represent an expectational error. Under rational expectations it cannot be predicted with the information available at time \(t \).
Log-linearizing the CRRA Euler equation.

Remember that we started from:

\[
\beta (1 + R_{t+1}^*) \frac{c_{t+1}}{c_t^{1-\gamma}} = \tilde{\epsilon}_{t+1}, \quad E_t[\tilde{\epsilon}_{t+1}] = 1.
\]

- The 'residual' term $\tilde{\epsilon}_{t+1}$ represent an expectational error. Under rational expectations it cannot be predicted with the information available at time t.
- It is a non-negative term as all the components of the left-hand side are non negative.
- If it is bounded away from zero we can take logs.
Log-linearizing the CRRA Euler equation.

Remember that we started from:

\[
\beta(1 + R^*_t) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} = \tilde{\epsilon}_{t+1}, \quad E_t[\tilde{\epsilon}_{t+1}] = 1.
\]

- The 'residual' term \(\tilde{\epsilon}_{t+1} \) represent an expectational error. Under rational expectations it cannot be predicted with the information available at time \(t \).
- It is a non-negative term as all the components of the left-hand side are non-negative.
- If it is bounded away from zero we can take logs.
- By Jensen inequality, while \(\log(E_t[\tilde{\epsilon}_{t+1}]) = 0 \),
 \[E_t[\log(\tilde{\epsilon}_{t+1})] \neq 0. \]
Log-linearizing the CRRA Euler equation.

Let us assume that \((1 + R^*_{t+1})\) and \(\frac{c_{t+1}}{c_t}\) are jointly log normal:

\[
\begin{pmatrix}
\log \left(\frac{c_{t+1}}{c_t} \right) \\
\log(1 + R^*_{t+1})
\end{pmatrix}
\sim N\left(\begin{pmatrix}
\mu_c \\
\mu_R
\end{pmatrix}, \begin{pmatrix}
\sigma^2_{c_t} & \sigma_{c_tR_t} \\
\sigma_{c_tR_t} & \sigma^2_{R_t}
\end{pmatrix} \right)
\]
Log-linearizing the CRRA Euler equation.

Let us assume that \((1 + R_{t+1}^*) \) and \(\frac{c_{t+1}}{c_t} \) are jointly log normal:

\[
\begin{pmatrix}
\log \left(\frac{c_{t+1}}{c_t} \right) \\
\log \left(1 + R^*_{t+1} \right)
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
\mu_c \\
\mu_R
\end{pmatrix},
\begin{pmatrix}
\sigma^2_c & \sigma_{c t} R_t \\
\sigma_{c t} R_t & \sigma^2_{R t}
\end{pmatrix}
\]

This implies that \(\tilde{\epsilon}_{t+1} \) is also log-normal:

\[
\log (\tilde{\epsilon}_{t+1}) \sim \mathcal{N}(\mu_e, \sigma^2_{e t})
\]

where:

\[
\mu_{e t} = \log(\beta) + \mu_{R t} - \gamma \mu_{c t}
\]
\[
\sigma^2_{e t} = \gamma^2 \sigma^2_c + \sigma^2_{R t} - 2 \gamma \sigma_{c t} R_t
\]
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h$$

$$\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t} \sigma_{R_t}]$$
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$
\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{hk}
$$

$$
\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t R_t}]
$$

This equation is amenable to estimation.

What are the issues to be addressed?
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h$$

$$\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t R_t}]$$

This equation is amenable to estimation.
What are the issues to be addressed?

- What for?
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h$$

$$\alpha_{t+1} = \log(\beta) + \frac{1}{2} [\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t} \sigma_{R_t}]$$

This equation is amenable to estimation.

What are the issues to be addressed?

- What for?
- The nature of the residuals and the estimation techniques.
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{hk}$$

$$\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{ct}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{ct} R_t]$$

This equation is amenable to estimation.

What are the issues to be addressed?

- What for?
- The nature of the residuals and the estimation techiques.
- The α_{t+1}: is it a problem?
Log-linearizing the CRRA Euler equation.

It therefore follows that:

$$\Delta \log(c_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h$$

$$\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t R_t}]$$

This equation is amenable to estimation.

What are the issues to be addressed?

- What for?
- The nature of the residuals and the estimation techniques.
- The α_{t+1}: is it a problem?
- Aggregation.
Log-linearizing the CRRA Euler equation.

It therefore follows that:

\[
\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h
\]

\[
\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2\sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma\sigma_{c_tR_t}]
\]

This equation is amenable to estimation.

What are the issues to be addressed?

- What for?
- The nature of the residuals and the estimation techniques.
- The \(\alpha_{t+1} \): is it a problem?
- Aggregation.
- Specification.
Why estimate an Euler equation?

- Estimate preference parameters.
Why estimate an Euler equation?

- Estimate preference parameters.
- Test the model.
Why estimate an Euler equation?

- Estimate preference parameters.
- Test the model.

Why not.
- It is not a consumption function.
- Cannot be used to predict consumption as a function of changes to policy.
The residuals of the (log-linearized) equation are expectation errors. They reflect expectations errors in:
- Consumption growth;
- Interest rates.
The nature of the residuals and estimation techniques

- The residuals of the (log-linearized) equation are expectation errors. They reflect expectations errors in:
 - Consumption growth;
 - Interest rates.

- This implies that they are correlated with actual realizations (of consumption and interest rates).

- This makes OLS estimates inconsistent.
The nature of the residuals and estimation techniques

- The residuals of the (log-linearized) equation are expectation errors. They reflect expectations errors in:
 - Consumption growth;
 - Interest rates.
- This implies that they are correlated with actual realizations (of consumption and interest rates).
- This makes OLS estimates inconsistent.
- IV or GMM techniques are however readily available.
 - Any available to consumers at time t us a valid instrument.

$$E[z_t^h \epsilon_{t+1}^h] = 0$$
- The abundance of instruments allows over-identification.
The nature of the residuals and estimation techniques

- IV or GMM techniques are based on the assumption that a moment population is equal to zero.

\[E[z_t^h \epsilon_{t+1}^h] = 0 \]
The nature of the residuals and estimation techniques

- IV or GMM techniques are based on the assumption that a moment population is equal to zero.

\[E[z_t^h \epsilon_{t+1}^h] = 0 \]

- The estimation is based on the idea of making sample analogues close to population moments.
The nature of the residuals and estimation techniques

- IV or GMM techniques are based on the assumption that a moment population is equal to zero.

\[E[z_t^h \epsilon_{t+1}^h] = 0 \]

- The estimation is based on the idea of making sample analogues close to population moments.
- Consistency is achieved averaging over many observations using a law of large numbers.
The nature of the residuals and estimation techniques

- IV or GMM techniques are based on the assumption that a moment population is equal to zero.
 \[E[z_t^h \epsilon_{t+1}^h] = 0 \]

- The estimation is based on the idea of making sample analogues close to population moments.
- Consistency is achieved averaging over many observations using a law of large numbers.
- The population moments, however, are taken over time. Not across people.
The nature of the residuals and estimation techniques

- IV or GMM techniques are based on the assumption that a moment population is equal to zero.

\[E[z_t^h \epsilon^{h}_{t+1}] = 0 \]

- The estimation is based on the idea of making sample analogues close to population moments.
- Consistency is achieved averaging over many observations using a law of large numbers.
- The population moments, however, are taken over time. Not across people.
- Even if we use micro panel data, to achieve consistency, we need large T.
The α_{t+1}: is it a problem?

\[\Delta \log(c^h_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \epsilon^h,k_{t+1} \]

\[\alpha_{t+1} = \log(\beta) + \frac{1}{2} [\gamma^2 \sigma^2_c + \sigma^2_R - 2\gamma \sigma_c R_t] \]

- The quantity α_{t+1} arises from the log-linearization of the Euler equation.
The α_{t+1}: is it a problem?

$$\Delta \log(c^h_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \epsilon^{h,k}_{t+1}$$

$$\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2\sigma^2_c + \sigma^2_{R_t} - 2\gamma\sigma_cR_t]$$

- The quantity α_{t+1} arises from the log-linearization of the Euler equation.
- If the second moment of consumption and interest rates are constant, there would not be a problem.
The α_{t+1}: is it a problem?

\[\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^h, \]

\[\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t} \sigma_{R_t}] \]

- The quantity α_{t+1} arises from the log-linearization of the Euler equation.
- If the second moment of consumption and interest rates are constant, there would not be a problem.
- But it is likely/plausible they vary.
 - An IV strategy remains valid if the instruments are uncorrelated with innovations to the second moments.
The α_{t+1}: is it a problem?

$$\Delta \log (c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \log (1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k}$$

$$\alpha_{t+1} = \log (\beta) + 1/2[\gamma^2 \sigma_{c_t}^2 + \sigma_{R_t}^2 - 2\gamma \sigma_{c_t} R_t]$$

- The quantity α_{t+1} arises from the log-linearization of the Euler equation.
- If the second moment of consumption and interest rates are constant, there would not be a problem.
- But it is likely/plausible they vary.
 - An IV strategy remains valid if the instruments are uncorrelated with innovations to the second moments.
 - Theoretically difficult to guess: consumption is endogenous and the theory is silent about the evolution of its second moments.
The α_{t+1}: is it a problem?

\[\Delta \log(c^h_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \epsilon^{h,k}_{t+1} \]

\[\alpha_{t+1} = \log(\beta) + 1/2[\gamma^2 \sigma^2_{ct} + \sigma^2_{Rt} - 2\gamma \sigma_{ct} R_t] \]

- The quantity α_{t+1} arises from the log-linearization of the Euler equation.
- If the second moment of consumption and interest rates are constant, there would not be a problem.
- But it is likely/plausible they vary.
 - An IV strategy remains valid if the instruments are uncorrelated with innovations to the second moments.
 - Theoretically difficult to guess: consumption is endogenous and the theory is silent about the evolution of its second moments.
 - Simulations seem to suggest it is ok. (Attanasio and Low (2003)).
Non-linear Euler equations.

Why not estimate the non-linear version of the Euler equation?

\[E_t \left[\beta \left(1 + R_{t+1}^* \right) \frac{C_{t+1}^{\gamma - 1}}{C_t^{\gamma - 1}} \right] - 1 = 0. \]
Non-linear Euler equations.

Why not estimate the non-linear version of the Euler equation?

\[
E_t \left[\beta(1 + R_{t+1}^*) \frac{c_{t+1}^{-\gamma}}{c_t^{-\gamma}} \right] - 1 = 0.
\]

\[
g_t(x_{t+1}, z_t, \theta) \equiv \left(\left[\beta(1 + R_{t+1}^*) \left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} \right] - 1 \right) \cdot z_t
\]

where \(z_t \) is a \(k \times 1 \) vector of variables known at time \(t \), \(x_{t+1} \) represents a vector of data and \(\theta \) a vector of parameters.
Non-linear Euler equations.

Why not estimate the non-linear version of the Euler equation?

\[E_t \left[\beta (1 + R_{t+1}^*) \frac{C_{t+1}^{-\gamma}}{C_t^{-\gamma}} \right] - 1 = 0. \]

\[g_t(x_{t+1}, z_t, \theta) \equiv \left(\left[\beta (1 + R_{t+1}^*) \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma} \right] - 1 \right) \cdot z_t \]

where \(z_t \) is a \(k \times 1 \) vector of variables known at time \(t \), \(x_{t+1} \) represents a vector of data and \(\theta \) a vector of parameters.
Non-linear Euler equations.

The theory implies:

$$E[g_t(x_{t+1}, z_t, \theta)] = 0$$
Non-linear Euler equations.

The theory implies:

$$E[g_t(x_{t+1}, z_t, \theta)] = 0$$

Choose estimator $\hat{\theta}$ such that

$$\hat{\theta} = \text{argmin} [G'_T W G_T]$$

where $G_T = \frac{1}{T} \sum_{t=1}^{T} g_t$ and W is a positive definite matrix.
Non-linear Euler equations.

The theory implies:

\[E[g_t(x_{t+1}, z_t, \theta)] = 0 \]

Choose estimator \(\hat{\theta} \) such that

\[\hat{\theta} = \arg\min [G_T' W G_T] \]

where \(G_T = \frac{1}{T} \sum_{t=1}^{T} g_t \) and \(W \) is a positive definite matrix.

What are the problems?

- Measurement error in consumption would induce inconsistent estimates.
Non-linear Euler equations.

The theory implies:
\[E[g_t(x_{t+1}, z_t, \theta)] = 0 \]

Choose estimator \(\hat{\theta} \) such that
\[\hat{\theta} = \text{argmin}[G_T'WG_T] \]

where \(G_T = \frac{1}{T} \sum_{t=1}^{T} g_t \) and \(W \) is a positive definite matrix.

What are the problems?

- Measurement error in consumption would induce inconsistent estimates.
- Small sample properties of non linear GMM are not great (Montecarlo evidence).
Non-linear Euler equations.

The theory implies:

\[E[g_t(x_{t+1}, z_t, \theta)] = 0 \]

Choose estimator \(\hat{\theta} \) such that

\[\hat{\theta} = \arg\min[G_T' W G_T] \]

where \(G_T = \frac{1}{T} \sum_{t=1}^{T} g_t \) and \(W \) is a positive definite matrix.

What are the problems?

- Measurement error in consumption would induce inconsistent estimates.
- Small sample properties of non linear GMM are not great (Montecarlo evidence).
- Cannot use time series of cross sections.
Aggregation

The Euler equation was derived from the maximization problem of a single consumer.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]
Aggregation

The Euler equation was derived from the maximization problem of a single consumer.

$$\Delta log(c^h_{t+1}) = \alpha + \frac{1}{\gamma} log(1 + R^k_{t+1}) + \epsilon^{h,k}_{t+1}$$

- Notice that this equation, while linear in the parameters, is not linear in individual variables,
Aggregation

The Euler equation was derived from the maximization problem of a single consumer.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- Notice that this equation, while linear in the parameters, is not linear in individual variables,
- This implies it cannot be estimated using aggregate data.

\[C_t = \frac{1}{H} \sum_h c_t^h \]

\[\log(C_t) = -\log(H) + \log(\sum_h c_t^h) \]
Aggregation

Aggregating the Euler equation one gets:

\[
\frac{1}{H} \sum_h \Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \frac{1}{H} \sum_h \epsilon_{t+1}^{h,k}
\]
Aggregation

Aggregating the Euler equation one gets:

\[\frac{1}{H} \sum_{h} \Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \frac{1}{H} \sum_{h} e_{t+1}^{h,k} \]

While on aggregate data:

\[\Delta \log \left(\frac{1}{H} \sum_{h} c_{t+1}^h \right) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \frac{1}{H} \sum_{h} e_{t+1}^{h,k} + \nu_{t+1} \]

\[\nu_{t+1} = \Delta \log \left(\frac{1}{H} \sum_{h} (c_{t+1}^h) \right) - \frac{1}{H} \sum_{h} \Delta \log(c_{t+1}^h) \]
Aggregation

Aggregating the Euler equation one gets:

\[
\frac{1}{H} \sum_h \Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \frac{1}{H} \sum_h e_{t+1}^{h,k}
\]

While on aggregate data:

\[
\Delta \log \left(\frac{1}{H} \sum_h c_{t+1}^h \right) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \frac{1}{H} \sum_h e_{t+1}^{h,k} + \nu_{t+1}
\]

\[
\nu_{t+1} = \Delta \log \left(\frac{1}{H} \sum_h (c_{t+1}^h) \right) - \frac{1}{H} \sum_h \Delta \log(c_{t+1}^h)
\]

\(\nu_t\) is a measure of inequality and is sometimes referred to as the Theil entropy measure.
Aggregation

Aggregating the Euler equation one gets:

\[\frac{1}{H} \sum_h \Delta \log(c^h_{t+1}) = \alpha + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \frac{1}{H} \sum_h \epsilon^{h,k}_{t+1} \]

While on aggregate data:

\[\Delta \log \left(\frac{1}{H} \sum_h c^h_{t+1} \right) = \alpha + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \frac{1}{H} \sum_h \epsilon^{h,k}_{t+1} + \nu_{t+1} \]

\[\nu_{t+1} = \Delta \log \left(\frac{1}{H} \sum_h (c^h_{t+1}) \right) - \frac{1}{H} \sum_h \Delta \log(c^h_{t+1}) \]

- \(\nu_t \) is a measure of inequality and is sometimes referred to as the Theil entropy measure.
- If such a variable is correlated with the instrument used in estimation it will induce biases in the estimation and possible rejections of the model.
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
- However, one can get around the lack of panel data by aggregating this equation directly.
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
- However, one can get around the lack of panel data by aggregating this equation directly.
- Let’s define groups of individuals in the population with fixed membership.
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
- However, one can get around the lack of panel data by aggregating this equation directly.
- Let's define groups of individuals in the population with fixed membership.
 - For instance year of birth cohorts.
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
- However, one can get around the lack of panel data by aggregating this equation directly.
- Let's define groups of individuals in the population with fixed membership.
 - For instance year of birth cohorts.
- Let's define

\[\overline{lc}_t^g = \frac{1}{H_t^g} \sum_{h \in g} \log(c_t^h). \]
Estimating on properly aggregated data.

\[\Delta \log(c_{t+1}^h) = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^{h,k} \]

- This equation should be estimated on panel data.
- However, one can get around the lack of panel data by aggregating this equation directly.
- Let’s define groups of individuals in the population with fixed membership.
 - For instance year of birth cohorts.
- Let’s define
 \[\overline{lc}_{g} = \frac{1}{H_{g}^t} \sum_{h \in g} \log(c_{t}^h). \]
- Aggregating the euler equation over the households belonging to group \(g \) we have:
 \[\Delta \overline{lc}_{t+1}^g = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^g \]
Estimating on properly aggregated data.

\[\Delta lc_{t+1}^g = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + \epsilon_{t+1}^g \]

- Synthetic cohort or pseudo-panel data, first proposed by Deaton (1985) and used by Browning, Deaton and Irish (1985) are very powerful.
Estimating on properly aggregated data.

\[\Delta l c_{t+1}^g = \alpha + \frac{1}{\gamma} \log (1 + R_{t+1}^k) + e_{t+1}^g \]

- Synthetic cohort or pseudo-panel data, first proposed by Deaton (1985) and used by Browning, Deaton and Irish (1985) are very powerful.
- One can use time series of cross sections that are much more commonly available.
Estimating on properly aggregated data.

\[\Delta l_c^g_{t+1} = \alpha + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + e^g_{t+1} \]

- Synthetic cohort or pseudo-panel data, first proposed by Deaton (1985) and used by Browning, Deaton and Irish (1985) are very powerful.
- One can use time series of cross sections that are much more commonly available.
- Notice why one needs linear in parameters specifications (but not necessarily linear in variables).
- One controls the aggregation process directly.
Estimating on properly aggregated data.

\[\Delta lc_{t+1}^g = \alpha + \frac{1}{\gamma} \log(1 + R_{t+1}^k) + e_{t+1}^g \]

- Synthetic cohort or pseudo-panel data, first proposed by Deaton (1985) and used by Browning, Deaton and Irish (1985) are very powerful.
- One can use time series of cross sections that are much more commonly available.
- Notice why one needs linear in parameters specifications (but not necessarily linear in variables).
- One controls the aggregation process directly.
- Econometric caveats:
 - Small sample induces MA errors.
 - Varying membership.
 - Non linearities and interactions.
We mentioned several times that to bring the model to the data we need to make it realistic.
Specification

- We mentioned several times that to bring the model to the data we need to make it realistic.
- There are two important dimensions:
 - Observable variables.
 - Unobservable variables.
Specification

- We mentioned several times that to bring the model to the data we need to make it realistic.
- There are two important dimensions:
 - Observable variables.
 - Unobservable variables.

Example:

\[
U(c_t, z_t, v_t) = \frac{(c_t^h)^{1-\gamma}}{1-\gamma} \exp\{\theta' z_t + u_t\}
\]
We mentioned several times that to bring the model to the data we need to make it realistic.

There are two important dimensions:
- Observable variables.
- Unobservable variables.

Example:

$$U(c_t, z_t, v_t) = \frac{(c^h_t)^{1-\gamma}}{1-\gamma} \exp\{\theta' z_t + u_t\}$$

The implied (log-linearized) Euler equation is:

$$\Delta \log (c^h_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \left[\log (1 + R^k_{t+1}) + \theta' \Delta z_{t+1} + \Delta u_{t+1} \right] + \epsilon_{t+1}^{h,k}$$
Specification

\[
\Delta \log(c_{t+1}^h) = \alpha_{t+1} + \frac{1}{\gamma} \left[\log(1 + R_{t+1}^k) + \theta' \Delta z_{t+1} + \Delta u_{t+1} + \epsilon_{t+1}^{h,k} \right]
\]

Examples of observable variables:

- Demographics.
- Labour supply variables (including discrete variables - participation).
- Seasonal effects.
Specification

\[\Delta \log(c^h_{t+1}) = \alpha_{t+1} + \frac{1}{\gamma} \log(1 + R^k_{t+1}) + \theta' \Delta z_{t+1} + \Delta u_{t+1} + \epsilon^{h,k}_{t+1} \]

Examples of observable variables:

- Demographics.
- Labour supply variables (including discrete variables - participation).
- Seasonal effects.

Unobservable variables:

- The properties of the estimators depend on the properties of the unobservable process:
 - Fixed effects \(\rightarrow\) drop out of the equation.
 - Random walk \(\rightarrow\) additional white noise.
 - White noise \(\rightarrow\) MA(1) residuals.
Euler equations: empirical evidence

- One of the main outputs of the estimation of Euler equation is the E.I.S., a very important parameter.
Euler equations: empirical evidence

- One of the main outputs of the estimation of Euler equation is the E.I.S., a very important parameter.
- Hall (1988) claims that the EIS is close to zero.
Euler equations: empirical evidence

- One of the main outputs of the estimation of Euler equation is the E.I.S., a very important parameter.
- Hall (1988) claims that the EIS is close to zero.
- But a low response of consumption growth to the real interest rate could obtain if some consumers are liquidity constrained, or if the error term correlates with the part of the interest rate explained by the instruments.
- Attanasio and Weber (1993, 1995) stress aggregation bias can be responsible for such correlation. They use cohort data.
- When they focus on cohorts of individuals who are least likely to be liquidity constrained, and control for changes in taste shifters, they estimate an elasticity around 0.8 using both UK and US data.

- There exist versions of the life cycle model that are consistent with the observed behaviour of households headed by prime-age individuals (25-60).
- It is crucial to incorporate into the model changing family needs.

- There exist versions of the life cycle model that are consistent with the observed behaviour of households headed by prime-age individuals (25-60).
- It is crucial to incorporate into the model changing family needs.
- It is also important to take into account non separability with female labour supply - especially women participation.

- There exist versions of the life cycle model that are consistent with the observed behaviour of households headed by prime-age individuals (25-60).
- It is crucial to incorporate into the model changing family needs.
- It is also important to take into account non separability with female labour supply - especially women participation.
- When estimating EE from this type of models an E.I.S. of about 0.7 is obtained in several data sets.

- There exist versions of the life cycle model that are consistent with the observed behaviour of households headed by prime-age individuals (25-60).
- It is crucial to incorporate into the model changing family needs.
- It is also important to take into account non separability with female labour supply - especially women participation.
- When estimating EE from this type of models an E.I.S. of about 0.7 is obtained in several data sets.
- To get an idea of how the level of consumption evolves over the life cycle and with changes in various variables (earnings, wages, interest rates etc.) the EE is not sufficient.

- There exist versions of the life cycle model that are consistent with the observed behaviour of households headed by prime-age individuals (25-60).
- It is crucial to incorporate into the model changing family needs.
- It is also important to take into account non separability with female labour supply - especially women participation.
- When estimating EE from this type of models an E.I.S. of about 0.7 is obtained in several data sets.
- To get an idea of how the level of consumption evolves over the life cycle and with changes in various variables (earnings, wages, interest rates etc.) the EE is not sufficient.
- It is necessary to solve the model numerically.
As the Euler Equation is not a consumption function, it does not tell us how consumption reacts to specific changes.

- Changes in taxation (fiscal policy).
- Unexpected changes in the interest rate (monetary policy).
- Other environmental changes (changes in uncertainty or job security).
As the Euler Equation is not a consumption function, it does not tell us how consumption reacts to specific changes.

- Changes in taxation (fiscal policy).
- Unexpected changes in the interest rate (monetary policy).
- Other environmental changes (changes in uncertainty or job security).

To get that we need to solve (numerically) the model.
As the Euler Equation is not a consumption function, it does not tell us how consumption reacts to specific changes.

- Changes in taxation (fiscal policy).
- Unexpected changes in the interest rate (monetary policy).
- Other environmental changes (changes in uncertainty or job security).

To get that we need to solve (numerically) the model.

The price we pay is the complete specification of the stochastic environment where individuals are assumed to live.
Solving the life cycle model.

- The numerical solution of the life cycle model has now become standard.
- Deaton (1991) was one of the first papers to do it to study precautionary savings and liquidity constraints.
The numebral solution of the life cycle model has now become standard.

Deaton (1991) was one of the first papers to do it to study precautionary savings and liquidity constraints.

Hubbard, Skinner and Zeldes (1994) introduced more complex models with means tested social programs.
Solving the life cycle model.

- The numerical solution of the life cycle model has now become standard.
- Deaton (1991) was one of the first papers to do it to study precautionary savings and liquidity constraints.
- Hubbard, Skinner and Zeldes (1994) introduced more complex models with means tested social programs.
- Attanasio, Banks, Meghir and Weber (1999) studied the ability of the model to reproduce observed life cycle profiles.
Solving the life cycle model.

- Several methods to solve the model.
Solving the life cycle model.

- Several methods to solve the model.
 - Value function iteration.
 - Euler equation and intertemporal budget constraint.
Solving the life cycle model.

- Several methods to solve the model.
 - Value function iteration.
 - Euler equation and intertemporal budget constraint.
- In the infinite horizon case the model can often be written so to derive stationary rules.
- This obviously simplifies the solution considerably.
Solving the life cycle model.

- Several methods to solve the model.
 - Value function iteration.
 - Euler equation and intertemporal budget constraint.
- In the infinite horizon case the model can often be written so to derive stationary rules.
- This obviously simplifies the solution considerably.
- Non stationary problems, for instance because of the presence of non stationary income, can be re-written so to be stationary.
Solving the life cycle model.

- Several methods to solve the model.
 - Value function iteration.
 - Euler equation and intertemporal budget constraint.
- In the infinite horizon case the model can often be written so to derive stationary rules.
- This obviously simplifies the solution considerably.
- Non stationary problems, for instance because of the presence of non stationary income, can be re-written so to be stationary.
- In the finite horizon case you cannot have stationary rules.
- Typical solution is by backward induction.
Solving the life cycle model: an example with infinite horizon.

Consider the following problem:

\[
\begin{align*}
\text{Max } & \quad E_t \sum_{j=0}^{\infty} \beta^j U(C_{t+j}) \\
A_{t+1} & = (1 + R_{t+1})(A_t + Y_t - C_t) \\
U(C) & = \frac{C^{1-\gamma}}{1-\gamma}, \quad \text{if } \gamma > 0, \gamma \neq 1; \\
U(C) & = \ln(C), \quad \text{if } \gamma = 1 \\
Y_t & = P_t U_t, \quad U_t \text{ i.i.d.} \\
P_t & = T_t P_{t-1} V_t, \quad T_t \text{ deterministic}, \quad V_t \text{ i.i.d.}
\end{align*}
\]
Solving the life cycle model: an example with infinite horizon.

In terms of cash in hand \(X_t = A_t + Y_t \):

\[
\text{Max} \quad E_t \sum_{j=0}^{\infty} \beta^j U(C_{t+j})
\]

\(X_{t+1} = (1 + R_{t+1})(X_t - C_t) + Y_{t+1}, \)

\(U(C) = \frac{C^{1-\gamma}}{1-\gamma}, \quad \text{if } \gamma > 0, \gamma \neq 1; \)

\(U(C) = \ln(C), \quad \text{if } \gamma = 1 \)

\(Y_t = P_t U_t, \quad U_t \text{ i.i.d.} \)

\(P_t = T_t P_{t-1} V_t, \quad T_t \text{ deterministic }, V_t \text{ i.i.d.} \)
Solving the life cycle model: an example with infinite horizon.

Normalize by permanent income:

\[
\text{Max } E_t \sum_{j=0}^{\infty} \beta^j U(c_{t+j} \cdot P_t) \quad c_t = C_t / P_t
\]

\[
x_{t+1} = (1 + R_{t+1})(x_t - c_t) \frac{P_t}{P_{t+1}} + y_{t+1}, \quad x_t = X_t / P_t, \quad y_t = Y_t / P_t
\]

\[
U(C) = \frac{C^{1-\gamma}}{1-\gamma}, \quad \text{if } \gamma > 0, \gamma \neq 1;
\]

\[
U(C) = \ln(C), \quad \text{if } \gamma = 1
\]

\[
y_t = U_t, \quad U_t \text{ i.i.d.}
\]

\[
P_t = T_t P_{t-1} V_t, \quad T_t \text{ deterministic }, \ V_t \text{ i.i.d.}
\]
Solving the life cycle model: an example with infinite horizon.

- The problem is now stationary and we can use the standard machinery we have studied.
Solving the life cycle model: an example with infinite horizon.

- The problem is now stationary and we can use the standard machinery we have studied.
- The unique state variable summarizing the state of the system will be x_t.
- We can get a stationary policy function:
 \[c_t = h(x_t) \]
- Notice that the rule does not depend on t.
Solving the life cycle model: an example with infinite horizon.

- The problem is now stationary and we can use the standard machinery we have studied.
- The unique state variable summarizing the state of the system will be x_t.
- We can get a stationary policy function:
 \[c_t = h(x_t) \]
- Notice that the rule does not depend on t.
- This result is possible because it is possible to parametrize the problem so that:
 \[
 r_t(x_t, u_t) = \beta^t r(x_t, u_t) \\
 g_t(x_t, u_t) = g(x_t, u_t)
 \]
Solving the life cycle model: an example with infinite horizon.

- Further simplification follows from the fact that our problem can be parametrized so that:
 \[\frac{\partial g}{\partial x} = 0 \]

- Note in our problem we can write \(x_t \) as the state variable and \(u_t \equiv x_t - c_t \) as the control, so that:
 \[x_{t+1} = (1 + R_{t+1})u_t + y_{t+1} \]
Solving the life cycle model: an example with infinite horizon.

- Further simplification follows from the fact that our problem can be parametrized so that:
 \[
 \frac{\partial g}{\partial x} = 0
 \]

- Note in our problem we can write \(x_t \) as the state variable and \(u_t \equiv x_t - c_t \) as the control, so that:
 \[
 x_{t+1} = (1 + R_{t+1})u_t + y_{t+1}
 \]

This delivers the result that:
\[
V' = \frac{\partial r}{\partial x}
\]
Solving the life cycle model: an example with finite horizon.

Consider again a similar problem but with finite lives.

\[
\text{Max } E_t \sum_{j=0}^{T} \beta^j U(c_{t+j} \cdot P_t) \quad c_t = C_t / P_t
\]

\[
x_{t+1} = (1 + R_{t+1})(x_t - c_t) \frac{P_t}{P_{t+1}} + y_{t+1}, \quad x_t = X_t / P_t, \quad y_t = Y_t / P_t
\]

\[
U(C) = \frac{C^{1-\gamma}}{1-\gamma}, \quad \text{if } \gamma > 0, \gamma \neq 1;
\]

\[
U(C) = \ln(C), \quad \text{if } \gamma = 1
\]

\[
y_t = U_t, \quad U_t \text{ i.i.d.}
\]

\[
P_t = T_t P_{t-1} V_t, \quad T_t \text{ deterministic }, V_t \text{ i.i.d.}
\]
Solving the life cycle model: an example with finite horizon.

- Now it is not possible to obtain time invariant policy rules: the problem is intrinsically non-stationary.
Solving the life cycle model: an example with finite horizon.

- Now it is not possible to obtain time invariant policy rules: the problem is intrinsically non-stationary.
- A recursive scheme to solve the model.
 1. Start from time T: $c_T = x_T$;
Solving the life cycle model: an example with finite horizon.

- Now it is not possible to obtain time invariant policy rules: the problem is intrinsically non-stationary.

- A recursive scheme to solve the model.
 1. Start from time T: $c_T = x_T$;
 2. At time $T - 1$ consider the Euler equation between T and $T - 1$.

\[
c_{T-1}^{-\gamma} = E_t \left[\beta (1 + R_T) c_T^{-\gamma} \right]
\]
Solving the life cycle model: an example with finite horizon.

- Now it is not possible to obtain time invariant policy rules: the problem is intrinsically non-stationary.
- A recursive scheme to solve the model.

1. Start from time T: $c_T = x_T$;
2. At time $T - 1$ consider the Euler equation between T and $T - 1$.

$$c_{T-1}^{-\gamma} = E_t [\beta (1 + R_T) c_T^{-\gamma}] = E_t [\beta (1 + R_T) x_T^{-\gamma}]$$
Solving the life cycle model: an example with finite horizon.

- Now it is not possible to obtain time invariant policy rules: the problem is intrinsically non-stationary.
- A recursive scheme to solve the model.
 1. Start from time T: $c_T = x_T$;
 2. At time $T - 1$ consider the Euler equation between T and $T - 1$.

\[
 c_T^{\gamma} = E_t \left[\beta (1 + R_T) c_T^{\gamma} \right] = E_t \left[\beta (1 + R_T) x_T^{\gamma} \right]
\]

3. Substitute for the intertemporal budget constraint and solve for c_{T-1} as a function of x_{T-1}:

\[
 c_T^{\gamma} = E_t \left[\beta (1 + R_T) (x_{T-1} - c_{T-1} + y_T) (1 + R_T) \right]^{\gamma}
\]

\[
 c_{T-1} = h_{T-1} (x_{T-1})
\]
Solving the life cycle model:
an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- This equation can be solved for each of many values of \(x \).
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- This equation can be solved for each of many values of \(x \).
- To compute the right hand side of the Euler equation we need to integrate the random variables \(y_T \) and \(R_T \).
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- This equation can be solved for each of many values of \(x \).
- To compute the right hand side of the Euler equation we need to integrate the random variables \(y_T \) and \(R_T \).
- Once we have the solution for \(c_{T-1} \) for several values of \(x_{T-1} \) we can consider the Euler equation between \(T - 2 \) and \(T - 2 \).

\[c_{T-2}^{-\gamma} = E_t[\beta(1 + R_{T-1})c_{T-1}^{-\gamma}] \]
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- This equation can be solved for each of many values of \(x \).
- To compute the right hand side of the Euler equation we need to integrate the random variables \(y_T \) and \(R_T \).
- Once we have the solution for \(c_{T-1} \) for several values of \(x_{T-1} \) we can consider the Euler equation between \(T - 2 \) and \(T - 2 \).

\[c_{T-2}^{\gamma} = E_t \left[\beta(1 + R_{T-1})c_{T-1}^{\gamma} \right] = E_t \left[\beta(1 + R_{T-1})[h_{T-1}(x_{T-1})]^{\gamma} \right] \]
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- This equation can be solved for each of many values of \(x \).
- To compute the right hand side of the Euler equation we need to integrate the random variables \(y_T \) and \(R_T \).
- Once we have the solution for \(c_{T-1} \) for several values of \(x_{T-1} \) we can consider the Euler equation between \(T-2 \) and \(T-2 \).

\[
c_{T-2}^{-\gamma} = E_t[\beta(1 + R_{T-1})c_{T-1}^{-\gamma}] = E_t[\beta(1 + R_{T-1})[h_{T-1}(x_{T-1})]^{-\gamma}]
\]

\[
= E_t[\beta(1 + R_{T-1})[h_{T-1}((x_{T-2} - c_{T-2} + y_{T-1})(1 + R_{T-1}))]^{-\gamma}]
\]
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

One difficulty arises from the fact that the points for \(x_{T-1} \) at which we need to evaluate the function \(h_{T-1} \) are not necessarily those for which we solved the equation in the previous step.
Solving the life cycle model: an example with finite horizon.

\[c_{T-1} = h_{T-1}(x_{T-1}) \]

- One difficulty arises from the fact that the points for \(x_{T-1} \) at which we need to evaluate the function \(h_{T-1} \) are not necessarily those for which we solved the equation in the previous step.
- It will be necessary to interpolate.
- The position of the grid is crucial to obtain numerically precise solutions.
Solving the life cycle model:
Humps and Bumps.

- Attanasio, Banks, Meghir and Weber (1999) solve a version of the life cycle model where some parameters are estimated from data.
 - Elasticity of intertemporal substitution.
Solving the life cycle model: Humps and Bumps.

- Attanasio, Banks, Meghir and Weber (1999) solve a version of the life cycle model where some parameters are estimated from data.
 - Elasticity of intertemporal substitution.
 - Role of demographics.
 - but...
Solving the life cycle model: Humps and Bumps.

- Attanasio, Banks, Meghir and Weber (1999) solve a version of the life cycle model where some parameters are estimated from data.
 - Elasticity of intertemporal substitution.
 - Role of demographics.
 - but...no labour supply.

- Consider different education groups and calibrate different discount rates.
Evolution of second moments

- One of the implications of the life cycle model is that consumption reacts only to permanent shocks.
Evolution of second moments

- One of the implications of the life cycle model is that consumption reacts only to permanent shocks.
- Temporary shocks are ‘smoothed out’.
Evolution of second moments

- One of the implications of the life cycle model is that consumption reacts only to permanent shocks.
- Temporary shocks are ‘smoothed out’.
- This has implications for the evolution of cross sectional moments of consumption and income.
Evolution of second moments

- One of the implications of the life cycle model is that consumption reacts only to permanent shocks.
- Temporary shocks are ‘smoothed out’.
- This has implications for the evolution of cross sectional moments of consumption and income.
- The cross sectional variance of consumption should increase by less than the cross sectional variance of income.
- The former reflects only permanent shocks, the latter permanent and transitory shocks.
One of the implications of the life cycle model is that consumption reacts only to permanent shocks.

Temporary shocks are ‘smoothed out’.

This has implications for the evolution of cross sectional moments of consumption and income.

The cross sectional variance of consumption should increase by less than the cross sectional variance of income.

The former reflects only permanent shocks, the latter permanent and transitory shocks.

Conversely, the evolution of variances (and covariances) is informative of the fraction of shocks that is reflected into consumption and what instead is insured.
Evolution of second moments

- One of the implications of the life cycle model is that consumption reacts only to permanent shocks.
- Temporary shocks are ‘smoothed out’.
- This has implications for the evolution of cross sectional moments of consumption and income.
- The cross sectional variance of consumption should increase by less than the cross sectional variance of income.
- The former reflects only permanent shocks, the latter permanent and transitory shocks.
- Conversely, the evolution of variances (and covariances) is informative of the fraction of shocks that is reflected into consumption and what instead is insured.
- Under perfect insurance, the cross sectional variance of consumption is constant over time.
Evolution of second moments

Consider the following set up.

\[\log(Y_{i,t}) = \phi' X_{i,t} + P_{i,t} + v_{i,t} \]
\[P_{i,t} = P_{i,t} + \zeta_{i,t} \]
\[v_{i,t} = \sum_{j=0}^{q} \theta_j \epsilon_{i,t-j} \]
Evolution of second moments

Consider the following set up.

\[
\log(Y_{i,t}) = \phi' X_{i,t} + P_{i,t} + v_{i,t}
\]

\[
P_{i,t} = P_{i,t} + \zeta_{i,t}
\]

\[
v_{i,t} = \sum_{j=0}^{q} \theta_j \epsilon_{i,t-j}
\]

\[
\Delta y_{i,t} = \zeta_{i,t} + \Delta v_{i,t}
\]
Evolution of second moments

Consider the following set up.

\[\log(Y_{i,t}) = \phi' X_{i,t} + P_{i,t} + v_{i,t} \]

\[P_{i,t} = P_{i,t} + \zeta_{i,t} \]

\[v_{i,t} = \sum_{j=0}^{q} \theta_j \epsilon_{i,t-j} \]

\[\Delta y_{i,t} = \zeta_{i,t} + \Delta v_{i,t} \]

\[\Delta c_{i,t} = \phi_t \zeta_{i,t} + \psi_t \epsilon_{i,t} + \zeta_{i,t} \]
Evolution of second moments

- Different models imply different hypotheses:
 - Perfect insurance: $\phi = 0, \psi = 0$.

Evolution of second moments

- Different models imply different hypotheses:
 - Perfect insurance: $\phi = 0, \psi = 0$.
 - PIH/LC $\phi = 1, \psi \approx 0$.

Excess smoothness: $\phi < 1$.

We can use second moments and their evolution to estimate the 'insurance' parameters and test these hypotheses.
Evolution of second moments

- Different models imply different hypotheses:
 - Perfect insurance: $\phi = 0, \psi = 0$.
 - PIH/LC $\phi = 1, \psi \approx 0$.
 - Excess smoothness: $\phi < 1$.
Evolution of second moments

- Different models imply different hypotheses:
 - Perfect insurance: $\phi = 0, \psi = 0$.
 - PIH/LC $\phi = 1, \psi \approx 0$.
 - Excess smoothness: $\phi < 1$.

- We can use second moments and their evolution to estimate the ‘insurance’ parameters and test these hypotheses.

Evolution of second moments

\[\text{Var}(\Delta y_{i,t}) = \text{var}(\zeta_{i,t}) + \text{var}(\Delta v_{i,t}) \]

\[\text{Cov}(\Delta y_{i,t}, \Delta y_{i,t-s}) = \text{Cov}(\Delta v_{i,t}, \Delta v_{i,t-s}) \]
Evolution of second moments

\begin{align*}
Var(\Delta y_{i,t}) &= var(\zeta_{i,t}) + var(\Delta v_{i,t}) \\
Cov(\Delta y_{i,t}, \Delta y_{i,t-s}) &= Cov(\Delta v_{i,t}, \Delta v_{i,t-s}) \\
\Delta Var(c_{i,t}) &= \Delta \phi_t^2 var(\zeta_{i,t}) + \phi_{t-1}^2 var(\zeta_{i,t}) + \Delta \psi_t^2 var(\epsilon_{i,t}) \\
&\quad + \psi_{t-1}^2 \Delta var(\epsilon_{i,t}) \\
Cov(\Delta c_{i,t}, \Delta c_{i,t-s}) &= \phi_t^2 var(\zeta_{i,t}) + \psi_t^2 Var(\epsilon_{i,t}) + var(\zeta_{i,t})
\end{align*}
Evolution of second moments

Table 7—Minimum-Distance Partial Insurance and Variance Estimates

<table>
<thead>
<tr>
<th>Consumption:</th>
<th>Nondurable net income baseline</th>
<th>Nondurable earnings only baseline</th>
<th>Nondurable male earnings baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ</td>
<td>0.6423</td>
<td>0.3100</td>
<td>0.2245</td>
</tr>
<tr>
<td>(Partial insurance perm. shock)</td>
<td>(0.0945)</td>
<td>(0.0574)</td>
<td>(0.0493)</td>
</tr>
<tr>
<td>ψ</td>
<td>0.0533</td>
<td>0.0633</td>
<td>0.0502</td>
</tr>
<tr>
<td>(Partial insurance trans. shock)</td>
<td>(0.0435)</td>
<td>(0.0309)</td>
<td>(0.0294)</td>
</tr>
</tbody>
</table>

Notes: This table reports DWMD results of the parameters of interest. We also estimate time-varying variances of measurement error in consumption (results not reported for brevity). See the main text for details. Standard errors in parentheses.